Linear spaces and preservers of bounded rank-two per-symmetric triangular matrices
نویسندگان
چکیده
Let F be a field and m,n be integers m,n > 3. Let SMn(F) and STn(F) denote the linear space of n × n per-symmetric matrices over F and the linear space of n × n per-symmetric triangular matrices over F, respectively. In this note, the structure of spaces of bounded rank-two matrices of STn(F) is determined. Using this structural result, a classification of bounded rank-two linear preservers ψ : STn(F) → SMm(F), with F of characteristic not two, is obtained. As a corollary, a complete description of bounded rank-two linear preservers between per-symmetric triangular matrix spaces over a field of characteristic not two is addressed.
منابع مشابه
On linear preservers of sgut-majorization on $textbf{M}_{n,m}$
Abstract. Let Mn;m be the set of n-by-m matrices with entries inthe field of real numbers. A matrix R in Mn = Mn;n is a generalizedrow substochastic matrix (g-row substochastic, for short) if Re e, where e = (1; 1; : : : ; 1)t. For X; Y 2 Mn;m, X is said to besgut-majorized by Y (denoted by X sgut Y ) if there exists ann-by-n upper triangular g-row substochastic matrix R such thatX = RY . This ...
متن کاملEla Additive Preservers of Tensor Product of Rank One Hermitian Matrices
Let K be a field of characteristic not two or three with an involution and F be its fixed field. Let Hm be the F -vector space of all m-square Hermitian matrices over K. Let ρm denote the set of all rank-one matrices in Hm. In the tensor product space ⊗ k i=1 Hmi , let ⊗ k i=1 ρmi denote the set of all decomposable elements ⊗ k i=1 Ai such that Ai ∈ ρmi , i = 1, . . . , k. In this paper, additi...
متن کاملAnalysis of Block LDL Factorizations for Symmetric Indefinite Matrices∗
We consider the block LDL factorizations for symmetric indefinite matrices in the form LBL , where L is unit lower triangular and B is block diagonal with each diagonal block having dimension 1 or 2. The stability of this factorization and its application to solving linear systems has been well-studied in the literature. In this paper we give a condition under which the LBL factorization will r...
متن کاملAdjacency preservers, symmetric matrices, and cores
It is shown that the graph Γn that has the set of all n× n symmetric matrices over a finite field as the vertex set, with two matrices being adjacent if and only if the rank of their difference equals one, is a core if n≥ 3. Eigenvalues of the graph Γn are calculated as well.
متن کاملComputing Symmetric Rank-Revealing Decompositions via Triangular Factorization
We present a family of algorithms for computing symmetric rank-revealing VSV decompositions, based on triangular factorization of the matrix. The VSV decomposition consists of a middle symmetric matrix that reveals the numerical rank in having three blocks with small norm, plus an orthogonalmatrix whose columns span approximations to the numerical range and null space. We show that for semi-de ...
متن کامل